

Presented to the Global CCS Institute Webinar March 18, 2014

Background

Universit

- Target : stabilising GHG emissions at 450 ppm(v) CO₂ equivalent
- Low-carbon electricity generation portfolio's
- What is role of NGCC-CCS in low-carbon portfolio
 - providing baseload power
 - providing backup services

Research questions Cost-effectiveness of NGCC-CCS in baseload role compared to offshore wind concentrated solar power (CSP) photovoltaic systems (PV) as backup service compared to pumped hydro storage (PHS) Compressed air energy storage (CAES) Li-ion battery ZiBr battery (Zinc-bromine) Zebra battery (Sodium-Nickel-Chloride, NaNiCl) What are the potential cost reductions over time due to learning?

Methodology – starting points Scope: costs for Europe Technological learning – experience curve method Progress ratio (PR): fraction of original cost after each doubling of cumulative installed capacity Learning rate = 1 – progress ratio. Global learning Levelised costs of electricity including extra costs for intermittent technologies Balancing Transmission Backup services

Carnegie Mellon Universi

Inventory of techno-economic data

• Medium values

University

- Averages of the input data found in the literature.
- can be considered as most representative values for Europe.
- Full ranges between optimistic and pessimistic values
- Values can be lower or higher in particular regions in Europe

Carnegie Mellon Universi

Technology	Reference year	CAPEX (€/kW)	PR CAPEX (%)	Discount rate (%)	Economic lifetime (years)	FOM (€/kW/y)	VOM (€/ <u>MWh</u>)	PR OPEX (%)
NGCC	2011	788	90*	7.5	25	9	2.7	94*
NGCC (part of NGCC-CCS plant)	2011	858	90*	14.5	25	10	3.2	94+
CO ₂ capture unit (90%)	2011	586	89°					
CO2 compression unit	2011	40	98	14.5	25	6	2.7	78*
Offshore wind	2011	3434	90*	12	20	142	0	90*
PV	2012	2000	80*	7.5	25	25	0	100 '
CSP (SM2, 6-9 hrs storage)	2010	6652	88*	12	25	34	0	1001
PHS	2010	1767	90*	7.5	60	30	0.6	100'
CAES	2011	1009	904	14.5	20	31	67	1001
		(CkWhater)			20	(C/kWhatar /y		
Li-ion	2010	1405	90° d	10	15	19	2.6	1001
ZEBRA	2011	735	90 ^d	14.5	15	10	0.9	100*
ZoBr	2011	353	904	14.5	15	7	25	1001

Natural gas price and CO ₂ price development									
		2011	2020	2030	2040	2050			
gas price *	€/GJ	6,7	7,5	7,0	6,5	6,0			
CO ₂ *	€/tCO ₂	13,5	33	70	107	144			
high gas price scenario**	€/GJ	6,7	8,5	9,4	9,8	10,4			
Based on IEA – 450 scenario									
Based on IEA – current policy scenario									

We treat these stylized systems as isolated systems (e.g. on an island) in a world which follows the BASE 450 scenario, the HIGH-REN 450 scenario, or the HIGH-NGCC-CCS 450 scenario.

- depends on deployment.
- under medium conditions:

University

- cost of NGCC-CCS in same range as offshore wind and CSP
- cost of NGCC-CCS lower than PV.

7

Carnegie Mellon Universi

Conclusions – NGCC-CCS as backup

- Less cost reductions for NGCC-CCS plants than for storage technologies (except for PHS).
- Large uncertainties in the development of LCOEs of power storage technologies.
- Cost of NGCC-CCS as backup

Universiteit Utrocht

- Somewhat higher than PHS, and CAES, and Zn-Br (depending on learning)
- Lower than Li-ion and ZEBRA.
- If cost for backup services are also taken into account NGCC-CCS is more cost-effective than a system with PHS and curtailment.

Carnegie Mellon University