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Background

 Target : stabilising GHG emissions at 450 ppm(v) CO, equivalent
¢ Low-carbon electricity generation portfolio’s

¢ What is role of NGCC-CCS in low-carbon portfolio
— providing baseload power

— providing backup services

Research questions

e Cost-effectiveness of NGCC-CCS
— in baseload role compared to

« offshore wind
* concentrated solar power (CSP)
* photovoltaic systems (PV)
— as backup service compared to
* pumped hydro storage (PHS)
* Compressed air energy storage (CAES)
¢ Li-ion battery
* ZiBr battery (Zinc-bromine)
* Zebra battery (Sodium-Nickel-Chloride, NaNiCl)

e What are the potential cost reductions over time due to learning?

Methodology — starting points

¢ Scope: costs for Europe

e Technological learning — experience curve method
— Progress ratio (PR): fraction of original cost after each doubling of cumulative installed
capacity
— Learning rate = 1 — progress ratio.
— Global learning

¢ Levelised costs of electricity including extra costs for intermittent
technologies
— Balancing
— Transmission

— Backup services




Levelised cost of electricity - LCOE

¢ Capital cost (CAPEX) and fixed operating and maintenance
cost (FOM)

— capacity factor is crucial parameter
e Variable operating and maintenance cost (VOC)
e Fuel cost
e CO, emission cost
e Extra balancing and transmission costs
e CO, transport and storage costs

¢ (costs for backup services included in system cost)
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Inventory of techno-economic data

Medium values
— Averages of the input data found in the literature.
— can be considered as most representative values for Europe.

Full ranges between optimistic and pessimistic values

Values can be lower or higher in particular regions in Europe
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Inventory of scenarios to determine number of doublings

* Scenarios with deployment to reach climate change mitigation
target.
— 44 scenarios: Global Energy Assessment (GEA, 2012).
— 1 scenario: Energy Technology Perspectives 2012 (ETP2012).

e Focus on 3 scenarios

— Base 450 scenario is the 450-ppm scenario (ETP scenario)

— High renewable scenario
— High NGCC-CCS scenario
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LCOE versus cumulative capacity under medium conditions v/
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Gas price is 6.7 €/GJ and CO2 price is 13.5 €/t.
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Natural gas price and CO, price development

€/GJ 6,7 7,5

€/tCO, 13,5 33

as price scenario™ [EJ/el] 6,7 8,5

" Based on IEA — 450 scenario

**Based on IEA — current policy scenario
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LCOE over time under medium conditions in the
Base 450 scenario
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Sensitivities of LCOEs for different variants in 2040*
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Taking into account backup requirements 2

In order include additional costs for backup requirements, we designed four stylized
systems based on:

* NGCC-CCS

¢ IRES/NGCC

¢ IRES/NGCC-CCS

¢ |RES/energy storage

Note: All investigated scenarios have a broader portfolio of technologies than these four
stylized systems. We only use these stylized systems in order to make some estimates of
the backup costs.

We treat these stylized systems as isolated systems (e.g. on an island) in a world which
follows the BASE 450 scenario, the HIGH-REN 450 scenario, or the HIGH-NGCC-CCS 450
scenario.




Share of electricity generation in stylized systems
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The percentage values indicate the capacity factors of the different technologies.
Capacity factors (CFs) of wind and PV in the IRES/STORAGE system are lower, because
part of the produced power is curtailed or used to charge power storage.

Caveats -> further research

¢ Techno-economic data uncertain, especially, for novel technologies like
ZEBRA and Zn-Br

* Progress ratios not always available or based on short historical time series.
* No deployment projections on storage capacity in global energy scenarios

e Limited power system simulation modelling results of low carbon electricity
generation portfolios with power storage

e Demand side management is not included
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Conclusions — NGCC-CCS as baseload

¢ Less cost reductions for NGCC and NGCC-CCS plants than for the
renewable energy technologies.

¢ Large uncertainties in the development of LCOEs of renewables.

¢ cost-effectiveness compared to alternatives over time
— depends on deployment.
— under medium conditions:
 cost of NGCC-CCS in same range as offshore wind and CSP
* cost of NGCC-CCS lower than PV.




Conclusions — NGCC-CCS as backup

e Less cost reductions for NGCC-CCS plants than for storage technologies
(except for PHS).

e Large uncertainties in the development of LCOEs of power storage
technologies.

e Cost of NGCC-CCS as backup

— Somewhat higher than PHS, and CAES, and Zn-Br (depending on
learning)

— Lower than Li-ion and ZEBRA.

e If cost for backup services are also taken into account NGCC-CCS is
more cost-effective than a system with PHS and curtailment.




